Bokuto Testnet

Contract

0x18eDFE1e49CA89157384832482c66E95Ea9B0Fca
Source Code Source Code

Overview

ETH Balance

0 ETH

More Info

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
Amount

There are no matching entries

Please try again later

Parent Transaction Hash Block From To Amount
View All Internal Transactions

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Bn128SchnorrVerifier

Compiler Version
v0.8.18+commit.87f61d96

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.18;

import "./Bn128.sol";

/**
 * @title Bn128SchnorrVerifier
 * @dev Implementation of Schnorr signature verification for the Bn128 curve
 * This contract provides functionality to verify Schnorr signatures using the Bn128 elliptic curve
 */
contract Bn128SchnorrVerifier is Bn128 {
    using SafeMath for uint256;

    /**
     * @dev Structure representing a point on the elliptic curve
     * @param x X-coordinate of the point
     * @param y Y-coordinate of the point
     */
    struct Point {
        uint256 x; uint256 y;
    }

    /**
     * @dev Structure containing all the data needed for signature verification
     * @param groupKey The public key point
     * @param randomPoint The random point used in signature generation
     * @param signature The signature value
     * @param message The message that was signed
     * @param _hash The hash value computed during verification
     * @param _left The left side of the verification equation
     * @param _right The right side of the verification equation
     */
    struct Verification {
        Point groupKey;
        Point randomPoint;
        uint256 signature;
        bytes32 message;

        uint256 _hash;
        Point _left;
        Point _right;
    }

    /**
     * @notice Computes the hash value used in Schnorr signature verification
     * @dev Implements the hash function h(m, R) where m is the message and R is the random point
     * @param m The message to be hashed
     * @param a X-coordinate of the random point
     * @param b Y-coordinate of the random point
     * @return The computed hash value
     */
    function h(bytes32 m, uint256 a, uint256 b) public pure returns (uint256) {
        return uint256(sha256(abi.encodePacked(m, a, b)));
    }

    /**
     * @notice Performs scalar multiplication on a point
     * @dev Wrapper for the ecmul function from Bn128
     * @param x X-coordinate of the input point
     * @param y Y-coordinate of the input point
     * @param scalar The scalar value to multiply by
     * @return The resulting point coordinates
     */
    function cmul(uint256 x, uint256 y, uint256 scalar) public view returns (uint256, uint256) {
        return ecmul(x, y, scalar);
    }

    /**
     * @notice Computes the signature point sG
     * @dev Multiplies the base point G by the signature value
     * @param sig_s The signature value
     * @return The resulting point coordinates
     */
    function sg(uint256 sig_s) public view returns (uint256, uint256) {
        return ecmul(getGx(), getGy(), sig_s);
    }

    /**
     * @notice Performs point addition
     * @dev Wrapper for the ecadd function from Bn128
     * @param ax X-coordinate of the first point
     * @param ay Y-coordinate of the first point
     * @param bx X-coordinate of the second point
     * @param by Y-coordinate of the second point
     * @return The resulting point coordinates
     */
    function cadd(uint256 ax, uint256 ay, uint256 bx, uint256 by) public view returns (uint256, uint256) {
        return ecadd(ax, ay, bx, by);
    }

    /**
     * @notice Verifies a Schnorr signature
     * @dev Implements the Schnorr signature verification algorithm for Bn128 curve
     * The verification checks if sG = R + h(m,R)Y where:
     * - s is the signature
     * - G is the base point
     * - R is the random point
     * - h(m,R) is the hash of the message and random point
     * - Y is the public key
     * The hash value is reduced modulo the curve order to ensure it's in the correct range
     * @param signature The signature to verify
     * @param groupKeyX X-coordinate of the public key
     * @param groupKeyY Y-coordinate of the public key
     * @param randomPointX X-coordinate of the random point
     * @param randomPointY Y-coordinate of the random point
     * @param message The message that was signed
     * @return bool indicating whether the signature is valid
     */
    function verify(bytes32 signature, bytes32 groupKeyX, bytes32 groupKeyY, bytes32 randomPointX, bytes32 randomPointY, bytes32 message)
        public
        view
        returns(bool)
    {
        bool flag = false;
        Verification memory state;

        state.signature = uint256(signature);
        state.groupKey.x = uint256(groupKeyX);
        state.groupKey.y = uint256(groupKeyY);
        state.randomPoint.x = uint256(randomPointX);
        state.randomPoint.y = uint256(randomPointY);
        state.message = message;

        state._hash = h(state.message, state.randomPoint.x, state.randomPoint.y);

        /// @dev Reduce hash value to bn256 range
        state._hash = (state._hash).mod(getOrder());

        (state._left.x, state._left.y) = sg(state.signature);
        Point memory rightPart;
        (rightPart.x, rightPart.y) = cmul(state.groupKey.x, state.groupKey.y, state._hash);
        (state._right.x, state._right.y) = cadd(state.randomPoint.x, state.randomPoint.y, rightPart.x, rightPart.y);

        flag = state._left.x == state._right.x && state._left.y == state._right.y;

        return flag;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.18;

import "@openzeppelin/contracts/utils/math/SafeMath.sol";

/**
 * @title Bn128
 * @dev Implementation of the Bn128 elliptic curve operations
 * This contract provides:
 * - Base point (G) coordinates
 * - Curve order
 * - Point addition (ECADD)
 * - Scalar multiplication (ECMUL)
 */
contract Bn128 {
    using SafeMath for uint256;

    /// @notice x-coordinate of the base point G
    uint256 constant gx = 0x1;
    
    /// @notice y-coordinate of the base point G
    uint256 constant gy = 0x2;

    /// @notice Order of the curve
    /// @dev Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1
    uint256 constant order = 21888242871839275222246405745257275088548364400416034343698204186575808495617;

    /**
     * @notice Returns the x-coordinate of the base point G
     * @return x-coordinate of G
     */
    function getGx() public pure returns (uint256) {
        return gx;
    }

    /**
     * @notice Returns the y-coordinate of the base point G
     * @return y-coordinate of G
     */
    function getGy() public pure returns (uint256) {
        return gy;
    }

    /**
     * @notice Returns the order of the curve
     * @return Order of the curve
     */
    function getOrder() public pure returns (uint256) {
        return order;
    }

    /**
     * @notice Performs point addition on the curve
     * @dev Adds two points (x1,y1) and (x2,y2) to get (x3,y3)
     * @param x1 x-coordinate of first point
     * @param y1 y-coordinate of first point
     * @param x2 x-coordinate of second point
     * @param y2 y-coordinate of second point
     * @return x3 x-coordinate of resulting point
     * @return y3 y-coordinate of resulting point
     */
    function ecadd(
        uint256 x1,
        uint256 y1,
        uint256 x2,
        uint256 y2
    ) public view returns (uint256 x3, uint256 y3) {
        uint256[2] memory outValue;
        uint256[4] memory input;
        input[0] = x1;
        input[1] = y1;
        input[2] = x2;
        input[3] = y2;

        assembly {
            if iszero(staticcall(gas(), 0x06, input, 0x80, outValue, 0x40)) {
                revert(0, 0)
            }
        }

        x3 = outValue[0];
        y3 = outValue[1];
    }

    /**
     * @notice Performs scalar multiplication on the curve
     * @dev Multiplies point (x1,y1) by scalar to get (x2,y2)
     * @param x1 x-coordinate of input point
     * @param y1 y-coordinate of input point
     * @param scalar Scalar value to multiply by
     * @return x2 x-coordinate of resulting point
     * @return y2 y-coordinate of resulting point
     */
    function ecmul(
        uint256 x1,
        uint256 y1,
        uint256 scalar
    ) public view returns (uint256 x2, uint256 y2) {
        uint256[2] memory outValue;
        uint256[3] memory input;
        input[0] = x1;
        input[1] = y1;
        input[2] = scalar;

        assembly {
            if iszero(staticcall(gas(), 0x07, input, 0x60, outValue, 0x40)) {
                revert(0, 0)
            }
        }

        x2 = outValue[0];
        y2 = outValue[1];
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract ABI

API
[{"inputs":[{"internalType":"uint256","name":"ax","type":"uint256"},{"internalType":"uint256","name":"ay","type":"uint256"},{"internalType":"uint256","name":"bx","type":"uint256"},{"internalType":"uint256","name":"by","type":"uint256"}],"name":"cadd","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"scalar","type":"uint256"}],"name":"cmul","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"x1","type":"uint256"},{"internalType":"uint256","name":"y1","type":"uint256"},{"internalType":"uint256","name":"x2","type":"uint256"},{"internalType":"uint256","name":"y2","type":"uint256"}],"name":"ecadd","outputs":[{"internalType":"uint256","name":"x3","type":"uint256"},{"internalType":"uint256","name":"y3","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"x1","type":"uint256"},{"internalType":"uint256","name":"y1","type":"uint256"},{"internalType":"uint256","name":"scalar","type":"uint256"}],"name":"ecmul","outputs":[{"internalType":"uint256","name":"x2","type":"uint256"},{"internalType":"uint256","name":"y2","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getGx","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getGy","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getOrder","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"m","type":"bytes32"},{"internalType":"uint256","name":"a","type":"uint256"},{"internalType":"uint256","name":"b","type":"uint256"}],"name":"h","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"sig_s","type":"uint256"}],"name":"sg","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"signature","type":"bytes32"},{"internalType":"bytes32","name":"groupKeyX","type":"bytes32"},{"internalType":"bytes32","name":"groupKeyY","type":"bytes32"},{"internalType":"bytes32","name":"randomPointX","type":"bytes32"},{"internalType":"bytes32","name":"randomPointY","type":"bytes32"},{"internalType":"bytes32","name":"message","type":"bytes32"}],"name":"verify","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]

608060405234801561001057600080fd5b5061069a806100206000396000f3fe608060405234801561001057600080fd5b506004361061009e5760003560e01c8063923e4f0111610066578063923e4f011461012a578063bb8c256a14610131578063d36dedd214610144578063f8fd2e831461016a578063fb3941b41461017d57600080fd5b8063182f875c146100a35780632dfb77cc146100cb5780634a6760b8146100f35780636495d679146101045780638081a1e714610117575b600080fd5b6100b66100b1366004610540565b610190565b60405190151581526020015b60405180910390f35b6100de6100d9366004610583565b6102c0565b604080519283526020830191909152016100c2565b60015b6040519081526020016100c2565b6100de6101123660046105af565b6102da565b6100de610125366004610583565b6102f6565b60026100f6565b6100de61013f3660046105af565b610341565b7f30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f00000016100f6565b6100de6101783660046105e1565b610394565b6100f661018b366004610583565b6103ad565b60008061019b610443565b60408101899052805188905280516020908101889052808201805188905280518201879052606083018690525180519101516101d89186916103ad565b60808201819052610209907f30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001610430565b6080820152604081015161021c90610394565b60a08301516020808201929092529190915260408051808201909152600080825281830152825180519201516080840151919261025b929091906102c0565b602080840182905282845284810151805191015161027d9391929091906102da565b60c0840180516020810192909252919052515160a0830151511480156102b257508160c00151602001518260a0015160200151145b9a9950505050505050505050565b6000806102ce8585856102f6565b91509150935093915050565b6000806102e986868686610341565b9150915094509492505050565b6000806103016104e6565b610309610504565b8681526020810186905260408082018690528260608360075afa61032c57600080fd5b50805160209091015190969095509350505050565b60008061034c6104e6565b610354610522565b878152602081018790526040808201879052606082018690528260808360065afa61037e57600080fd5b5080516020909101519097909650945050505050565b6000806103a460016002856102f6565b91509150915091565b60408051602081018590529081018390526060810182905260009060029060800160408051601f19818403018152908290526103e8916105fa565b602060405180830381855afa158015610405573d6000803e3d6000fd5b5050506040513d601f19601f820116820180604052508101906104289190610629565b949350505050565b600061043c8284610642565b9392505050565b604080516101208101909152600060e0820181815261010083019190915281908152602001610485604051806040016040528060008152602001600081525090565b81526020016000815260200160008019168152602001600081526020016104bf604051806040016040528060008152602001600081525090565b81526020016104e1604051806040016040528060008152602001600081525090565b905290565b60405180604001604052806002906020820280368337509192915050565b60405180606001604052806003906020820280368337509192915050565b60405180608001604052806004906020820280368337509192915050565b60008060008060008060c0878903121561055957600080fd5b505084359660208601359650604086013595606081013595506080810135945060a0013592509050565b60008060006060848603121561059857600080fd5b505081359360208301359350604090920135919050565b600080600080608085870312156105c557600080fd5b5050823594602084013594506040840135936060013592509050565b6000602082840312156105f357600080fd5b5035919050565b6000825160005b8181101561061b5760208186018101518583015201610601565b506000920191825250919050565b60006020828403121561063b57600080fd5b5051919050565b60008261065f57634e487b7160e01b600052601260045260246000fd5b50069056fea26469706673582212202dba88d2730837bada25f841679fbc4ada909cce4c2bd317b7726b068bcedb8b64736f6c63430008120033

Deployed Bytecode

0x608060405234801561001057600080fd5b506004361061009e5760003560e01c8063923e4f0111610066578063923e4f011461012a578063bb8c256a14610131578063d36dedd214610144578063f8fd2e831461016a578063fb3941b41461017d57600080fd5b8063182f875c146100a35780632dfb77cc146100cb5780634a6760b8146100f35780636495d679146101045780638081a1e714610117575b600080fd5b6100b66100b1366004610540565b610190565b60405190151581526020015b60405180910390f35b6100de6100d9366004610583565b6102c0565b604080519283526020830191909152016100c2565b60015b6040519081526020016100c2565b6100de6101123660046105af565b6102da565b6100de610125366004610583565b6102f6565b60026100f6565b6100de61013f3660046105af565b610341565b7f30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f00000016100f6565b6100de6101783660046105e1565b610394565b6100f661018b366004610583565b6103ad565b60008061019b610443565b60408101899052805188905280516020908101889052808201805188905280518201879052606083018690525180519101516101d89186916103ad565b60808201819052610209907f30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001610430565b6080820152604081015161021c90610394565b60a08301516020808201929092529190915260408051808201909152600080825281830152825180519201516080840151919261025b929091906102c0565b602080840182905282845284810151805191015161027d9391929091906102da565b60c0840180516020810192909252919052515160a0830151511480156102b257508160c00151602001518260a0015160200151145b9a9950505050505050505050565b6000806102ce8585856102f6565b91509150935093915050565b6000806102e986868686610341565b9150915094509492505050565b6000806103016104e6565b610309610504565b8681526020810186905260408082018690528260608360075afa61032c57600080fd5b50805160209091015190969095509350505050565b60008061034c6104e6565b610354610522565b878152602081018790526040808201879052606082018690528260808360065afa61037e57600080fd5b5080516020909101519097909650945050505050565b6000806103a460016002856102f6565b91509150915091565b60408051602081018590529081018390526060810182905260009060029060800160408051601f19818403018152908290526103e8916105fa565b602060405180830381855afa158015610405573d6000803e3d6000fd5b5050506040513d601f19601f820116820180604052508101906104289190610629565b949350505050565b600061043c8284610642565b9392505050565b604080516101208101909152600060e0820181815261010083019190915281908152602001610485604051806040016040528060008152602001600081525090565b81526020016000815260200160008019168152602001600081526020016104bf604051806040016040528060008152602001600081525090565b81526020016104e1604051806040016040528060008152602001600081525090565b905290565b60405180604001604052806002906020820280368337509192915050565b60405180606001604052806003906020820280368337509192915050565b60405180608001604052806004906020820280368337509192915050565b60008060008060008060c0878903121561055957600080fd5b505084359660208601359650604086013595606081013595506080810135945060a0013592509050565b60008060006060848603121561059857600080fd5b505081359360208301359350604090920135919050565b600080600080608085870312156105c557600080fd5b5050823594602084013594506040840135936060013592509050565b6000602082840312156105f357600080fd5b5035919050565b6000825160005b8181101561061b5760208186018101518583015201610601565b506000920191825250919050565b60006020828403121561063b57600080fd5b5051919050565b60008261065f57634e487b7160e01b600052601260045260246000fd5b50069056fea26469706673582212202dba88d2730837bada25f841679fbc4ada909cce4c2bd317b7726b068bcedb8b64736f6c63430008120033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
0x18eDFE1e49CA89157384832482c66E95Ea9B0Fca
Loading...
Loading
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.